metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(1,10-phenanthroline- $\kappa^2 N$, N')[2-(4sulfonatoanilino)acetato- κO [copper(II) dihydrate

Yue Lu, Xing Li,* Yue Bing, Mei-Qin Zha and Yin-Xin Li

Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China Correspondence e-mail: lixing@nbu.edu.cn

Received 20 February 2011; accepted 28 February 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.130; data-to-parameter ratio = 16.1.

In the title compound, $[Cu(C_8H_7NO_5S)(C_{12}H_8N_2)_2]\cdot 2H_2O$, the Cu^{II} ion is coordinated by four N atoms from two 1,10phenanthroline (phen) ligands and one O atom from a 2-(4sulfonatoanilino)acetate (spia) ligand in a distorted squarepyramidal geometry. Intermolecular N-H···O and O-H···O hydrogen bonds, as well as $\pi - \pi$ interactions between phen ligands and between phen and spia ligands [centroidcentroid distances = 3.663(3), 3.768(3) and 3.565(3)Å], result in a three-dimensional supramolecular structure.

Related literature

For metal complexes with flexible or semi-rigid ligands, see: Chu et al. (2008); Xu et al. (2006a,b); Yong et al. (2004, 2005).

Experimental

Crystal data $[Cu(C_8H_7NO_5S)(C_{12}H_8N_2)_2]\cdot 2H_2O$ $M_r = 689.19$ Triclinic, P1 a = 9.3437 (19) Åb = 13.274 (3) Å c = 13.880 (3) Å $\alpha = 64.61 \ (3)^{\circ}$ $\beta = 88.77 (3)^{\circ}$

 $\gamma = 69.83 \ (3)^{\circ}$ V = 1443.6 (8) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.89 \text{ mm}^-$ T = 293 K $0.24 \times 0.18 \times 0.08 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID

```
diffractometer
Absorption correction: multi-scan
  (ABSCOR; Higashi, 1995)
  T_{\min} = 0.825, \ \tilde{T}_{\max} = 0.931
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	409 parameters
$wR(F^2) = 0.130$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.83 \text{ e } \text{\AA}^{-3}$
6590 reflections	$\Delta \rho_{\rm min} = -1.99 \text{ e} \text{ Å}^{-3}$

14102 measured reflections

 $R_{\rm int} = 0.042$

6590 independent reflections

5238 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Cu1-O2	1.993 (2)	Cu1-N3	2.005 (2)
Cu1-N1	1.999 (2)	Cu1-N4	2.212 (3)
Cu1-N2	2.049 (2)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N5-H5A\cdots O2^{i}$	0.86	2.35	3.173 (4)	160
$O6-H6A\cdots O4$	0.76	2.11	2.850 (5)	166
$O6-H6B\cdots O1^{ii}$	0.86	2.15	2.963 (5)	156
$O7 - H7B \cdot \cdot \cdot O3^{iii}$	0.72	2.24	2.915 (4)	156
$O7-H7A\cdots O5^{iv}$	0.76	2.11	2.785 (4)	148

Symmetry codes: -x + 1, -y + 1, -z + 1;x + 1, y - 1, z;(iii) (i) (ii) -x + 1, -y + 1, -z; (iv) x - 1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was supported by the Ningbo Natural Science Foundation of China (2010A610060), the 'Qianjiang Talent' Projects of Zhejiang Province (2009R10032), the Ningbo University Foundation (XK1066) and the K. C. Wong Magna Fund in Ningbo University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2409).

References

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Chu, Q., Liu, G.-X., Okamura, T., Huang, Y.-Q., Sun, W.-Y. & Ueyama, N. (2008). Polyhedron, 27, 812-820.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Xu, Y.-Q., Chen, B.-Q., Gong, Y.-Q., Yuan, D.-Q., Jiang, F.-L. & Hong, M.-C. (2006a). J. Mol. Struct. **789**, 220–224.
- Xu, Y.-Q., Yuan, D.-Q., Wu, B.-L., Han, L., Wu, M.-Y., Jiang, F.-L. & Hong, M.-C. (2006b). Cryst. Growth Des. 6, 1168–1174.
- Yong, G.-P., Qiao, S., Wang, Z.-Y. & Cui, Y. (2005). Inorg. Chim. Acta, 358, 3905–3913.
- Yong, G.-P., Wang, Z.-Y. & Chen, J.-T. (2004). J. Mol. Struct. 707, 220-224.

Acta Cryst. (2011). E67, m402-m403 [doi:10.1107/S160053681100746X]

Bis(1,10-phenanthroline- $\kappa^2 N, N'$)[2-(4-sulfonatoanilino)acetato- κO]copper(II) dihydrate

Y. Lu, X. Li, Y. Bing, M.-Q. Zha and Y.-X. Li

Comment

Flexible or semi-rigid ligands can adopt various conformations and coordination modes according to the geometric requirements of different metal ions, which have attracted more attention in the fields of supramolecular chemistry (Chu *et al.*, 2008; Xu *et al.*, 2006*a*,b; Yong *et al.*, 2004, 2005). Here we use N-(4-sulfanilicphenyl)iminoacetic acid (H₂spia) and CuSO₄.5H₂O to prepare a copper compound with the spia ligand. The title compound is a mononuclear complex, with five-coordinated Cu^{II} ions. As shown in Fig. 1, the Cu^{II} ion is coordinated by one O atom from an spia ligand and four N atoms from two 1,10-phenanthroline ligands. There are two uncoordinated water molecules in the asymmetric unit.

Experimental

H₂spia was prepared following the method described by Yong *et al.* (2005). A solution of KOH (2.694 g, 48 mmol) in water (5 ml) was added dropwise to chloroacetic acid sodium salt (2.796 g, 24 mmol) in water (5 ml) with stirring. Sulfanilic acid (1.044 g, 6 mmol) was slowly added to the reaction mixture and KI (0.025 g) was added as catalyst. Then the mixture was refluxed at about 80°C for 30 h. The reaction solution was cooled to room temperature and acidified with HCl (6 mol/*L*) until the desired white acidic material precipitated (pH = 3), which was filtered, washed with water and dried in air.

The title compound was prepared by a solvent evaporation method. A mixture of $CuSO_4.5H_2O$ (0.025 g, 0.1 mmol), H_2 spia (0.029 g, 0.1 mmol), and 1,10-phenanthroline (0.040 g, 0.20 mmol) in 15 ml of water was heated for 30 min. One drop of KOH solution was added to adjust pH to 5, and then the mixture was filtered. Dark green single crystals suitable for X-ray analysis were obtained by slow evaporation of solvent at room temperature.

Refinement

H atoms attached to C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.98 (CH₂), N—H = 0.86 Å and with $U_{iso}(H) = 1.2U_{eq}(C, N)$. H atoms of water molecules were found in a difference Fourier map and refined as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Crystal packing of the title compound, showing π - π stacking interactions (dashed lines) between the phen ligands [centroid–centroid distances = 3.663 (3) and 3.768 (3) Å] and between the phen and spia ligands [centroid–centroid distance = 3.565(3) Å].

Bis(1,10-phenanthroline- $\kappa^2 N$, N')[2-(4- sulfonatoanilino)acetato- κO]copper(II) dihydrate

Crystal	data
---------	------

[Cu(C ₈ H ₇ NO ₅ S)(C ₁₂ H ₈ N ₂) ₂]·2H ₂ O	Z = 2
$M_r = 689.19$	F(000) = 710
Triclinic, <i>P</i> 1	$D_{\rm x} = 1.585 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 9.3437 (19) Å	Cell parameters from 14102 reflections
b = 13.274(3) Å	$\theta = 3.1 - 27.5^{\circ}$
c = 13.880 (3) Å	$\mu = 0.89 \text{ mm}^{-1}$
$\alpha = 64.61 \ (3)^{\circ}$	T = 293 K
$\beta = 88.77 (3)^{\circ}$	Platelet, dark green
$\gamma = 69.83 \ (3)^{\circ}$	$0.24 \times 0.18 \times 0.08 \ mm$
V = 1443.6 (8) Å ³	

Data collection

Rigaku R-AXIS RAPID diffractometer	6590 independent reflections
Radiation source: rotation anode	5238 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.042$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -11 \rightarrow 12$
$T_{\min} = 0.825, T_{\max} = 0.931$	$k = -17 \rightarrow 17$
14102 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.130$	H-atom parameters constrained
<i>S</i> = 1.11	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0596P)^{2} + 1.1815P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
6590 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
409 parameters	$\Delta \rho_{max} = 0.83 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.99 \text{ e } \text{\AA}^{-3}$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.50512 (4)	0.83070 (3)	0.27467 (2)	0.02821 (11)
S1	0.82946 (9)	0.30436 (7)	0.13978 (6)	0.03859 (18)
01	0.2037 (3)	0.7912 (2)	0.2589 (2)	0.0650 (7)
O2	0.4453 (2)	0.68782 (18)	0.34176 (16)	0.0363 (5)
O3	0.7572 (3)	0.3723 (2)	0.02907 (19)	0.0601 (7)
O4	0.8555 (2)	0.17807 (19)	0.18310 (17)	0.03859 (18)
O5	0.9698 (3)	0.3209 (3)	0.1589 (3)	0.0700 (8)
O6	0.8946 (4)	-0.0692 (3)	0.2861 (3)	0.0805 (9)
H6B	0.9681	-0.1096	0.2628	0.097*
H6A	0.8849	-0.0049	0.2496	0.097*
07	0.2154 (3)	0.3957 (3)	0.0958 (3)	0.0848 (10)
H7B	0.2070	0.4536	0.0521	0.102*
H7A	0.1317	0.4014	0.0956	0.102*
N1	0.6589 (3)	0.7539 (2)	0.20033 (18)	0.0299 (5)
N2	0.5263 (3)	0.9827 (2)	0.15768 (17)	0.0286 (5)
N3	0.3742 (3)	0.9116 (2)	0.35647 (17)	0.0280 (5)
N4	0.6770 (3)	0.7688 (2)	0.41483 (18)	0.0307 (5)
N5	0.4049 (3)	0.4718 (2)	0.4122 (2)	0.0372 (6)
H5A	0.4238	0.4250	0.4803	0.045*
C1	0.3090 (4)	0.6979 (3)	0.3178 (2)	0.0355 (6)
C2	0.2737 (3)	0.5822 (3)	0.3707 (3)	0.0379 (7)
H2A	0.2164	0.5843	0.4294	0.046*
H2B	0.2073	0.5823	0.3179	0.046*
C3	0.5021 (3)	0.4384 (2)	0.3459 (2)	0.0322 (6)
C4	0.6514 (3)	0.3536 (2)	0.3900 (2)	0.0339 (6)
H4	0.6851	0.3226	0.4631	0.041*
C5	0.7493 (3)	0.3154 (3)	0.3265 (2)	0.0342 (6)
Н6	0.8485	0.2593	0.3573	0.041*
C6	0.7018 (3)	0.3596 (2)	0.2172 (2)	0.0321 (6)
C7	0.5545 (3)	0.4453 (3)	0.1722 (2)	0.0367 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H7	0.5219	0.4765	0.0989	0.044*
C8	0.4560 (4)	0.4848 (3)	0.2347 (2)	0.0372 (6)
Н5	0.3581	0.5428	0.2031	0.045*
C9	0.7205 (3)	0.6388 (3)	0.2225 (2)	0.0363 (6)
Н9	0.6801	0.5856	0.2715	0.044*
C10	0.8439 (4)	0.5948 (3)	0.1746 (3)	0.0442 (7)
H10	0.8843	0.5136	0.1916	0.053*
C11	0.9054 (4)	0.6718 (3)	0.1025 (3)	0.0447 (7)
H11	0.9889	0.6429	0.0713	0.054*
C12	0.8420 (3)	0.7936 (3)	0.0762 (2)	0.0361 (6)
C13	0.8923 (4)	0.8835 (3)	-0.0014 (3)	0.0457 (8)
H13	0.9745	0.8606	-0.0362	0.055*
C14	0.8231 (4)	0.9996 (3)	-0.0246 (3)	0.0455 (8)
H14	0.8580	1.0555	-0.0757	0.055*
C15	0.6969 (3)	1.0401 (3)	0.0272 (2)	0.0356 (6)
C16	0.6218 (4)	1.1597 (3)	0.0083 (3)	0.0451 (8)
H16	0.6543	1.2192	-0.0397	0.054*
C17	0.5005 (4)	1.1882 (3)	0.0611 (3)	0.0453 (8)
H17	0.4483	1.2676	0.0479	0.054*
C18	0.4555 (4)	1.0975 (3)	0.1349 (2)	0.0375 (6)
H18	0.3722	1.1184	0.1696	0.045*
C19	0.6454 (3)	0.9541 (2)	0.1040 (2)	0.0287 (5)
C20	0.7174 (3)	0.8311 (2)	0.1275 (2)	0.0289 (5)
C21	0.2280 (3)	0.9850 (3)	0.3261 (2)	0.0347 (6)
H21	0.1803	1.0065	0.2583	0.042*
C22	0.1422 (4)	1.0315 (3)	0.3907 (3)	0.0403 (7)
H22	0.0398	1.0836	0.3660	0.048*
C23	0.2101 (3)	0.9997 (3)	0.4914 (2)	0.0371 (6)
H23	0.1542	1.0301	0.5356	0.044*
C24	0.3645 (3)	0.9212 (2)	0.5271 (2)	0.0295 (6)
C25	0.4415 (4)	0.8779 (3)	0.6331 (2)	0.0368 (6)
H25	0.3886	0.9037	0.6808	0.044*
C26	0.5888 (4)	0.8008 (3)	0.6650 (2)	0.0383 (7)
H26	0.6350	0.7717	0.7352	0.046*
C27	0.6758 (3)	0.7627 (2)	0.5921 (2)	0.0322 (6)
C28	0.8313 (4)	0.6867 (3)	0.6195 (3)	0.0432 (7)
H28	0.8838	0.6579	0.6878	0.052*
C29	0.9051 (4)	0.6555 (3)	0.5448 (3)	0.0481 (8)
H29	1.0088	0.6059	0.5617	0.058*
C30	0.8241 (3)	0.6985 (3)	0.4431 (3)	0.0399 (7)
H30	0.8762	0.6766	0.3930	0.048*
C31	0.6037 (3)	0.8018 (2)	0.4881 (2)	0.0269 (5)
C32	0.4447 (3)	0.8800 (2)	0.4561 (2)	0.0262 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.03390 (19)	0.02680 (19)	0.02459 (18)	-0.01173 (14)	0.00970 (12)	-0.01201 (13)

S1	0.0437 (4)	0.0380 (4)	0.0373 (4)	-0.0160 (3)	0.0141 (3)	-0.0195 (3)
01	0.0678 (17)	0.0393 (14)	0.0659 (18)	-0.0111 (13)	-0.0156 (14)	-0.0099 (13)
O2	0.0408 (11)	0.0305 (10)	0.0413 (12)	-0.0188 (9)	0.0159 (9)	-0.0157 (9)
O3	0.0700 (17)	0.0599 (16)	0.0314 (12)	-0.0063 (14)	0.0115 (11)	-0.0178 (11)
O4	0.0437 (4)	0.0380 (4)	0.0373 (4)	-0.0160 (3)	0.0141 (3)	-0.0195 (3)
O5	0.0512 (15)	0.106 (2)	0.092 (2)	-0.0452 (17)	0.0369 (15)	-0.068 (2)
O6	0.073 (2)	0.0683 (19)	0.094 (2)	-0.0366 (17)	0.0195 (17)	-0.0232 (17)
O7	0.0587 (17)	0.072 (2)	0.078 (2)	-0.0235 (16)	-0.0072 (15)	0.0056 (16)
N1	0.0365 (12)	0.0315 (12)	0.0264 (11)	-0.0165 (10)	0.0094 (9)	-0.0144 (9)
N2	0.0342 (12)	0.0281 (11)	0.0240 (11)	-0.0109 (10)	0.0028 (9)	-0.0125 (9)
N3	0.0318 (11)	0.0278 (11)	0.0242 (11)	-0.0112 (10)	0.0050 (9)	-0.0115 (9)
N4	0.0305 (11)	0.0330 (12)	0.0303 (12)	-0.0130 (10)	0.0078 (9)	-0.0148 (10)
N5	0.0506 (15)	0.0279 (12)	0.0327 (13)	-0.0158 (11)	0.0167 (11)	-0.0128 (10)
C1	0.0452 (17)	0.0315 (15)	0.0304 (15)	-0.0134 (14)	0.0094 (12)	-0.0153 (12)
C2	0.0390 (16)	0.0378 (16)	0.0457 (17)	-0.0195 (14)	0.0189 (13)	-0.0229 (14)
C3	0.0439 (16)	0.0270 (13)	0.0319 (14)	-0.0212 (13)	0.0141 (12)	-0.0129 (11)
C4	0.0467 (16)	0.0285 (14)	0.0247 (13)	-0.0155 (13)	0.0052 (11)	-0.0092 (11)
C5	0.0384 (15)	0.0269 (13)	0.0328 (15)	-0.0101 (12)	0.0034 (11)	-0.0108 (11)
C6	0.0391 (15)	0.0299 (14)	0.0318 (14)	-0.0174 (13)	0.0113 (11)	-0.0146 (11)
C7	0.0421 (16)	0.0373 (16)	0.0266 (14)	-0.0131 (14)	0.0049 (11)	-0.0121 (12)
C8	0.0374 (15)	0.0352 (15)	0.0340 (15)	-0.0094 (13)	0.0032 (12)	-0.0140 (12)
С9	0.0401 (16)	0.0310 (15)	0.0410 (16)	-0.0146 (13)	0.0129 (12)	-0.0182 (13)
C10	0.0457 (18)	0.0367 (16)	0.053 (2)	-0.0115 (15)	0.0120 (15)	-0.0261 (15)
C11	0.0402 (17)	0.055 (2)	0.0489 (19)	-0.0174 (16)	0.0181 (14)	-0.0335 (16)
C12	0.0354 (15)	0.0477 (17)	0.0345 (15)	-0.0204 (14)	0.0121 (12)	-0.0230 (13)
C13	0.0421 (17)	0.061 (2)	0.0409 (18)	-0.0271 (17)	0.0189 (14)	-0.0233 (16)
C14	0.0472 (18)	0.056 (2)	0.0363 (17)	-0.0332 (17)	0.0127 (13)	-0.0129 (15)
C15	0.0400 (15)	0.0404 (16)	0.0290 (14)	-0.0238 (14)	0.0016 (11)	-0.0107 (12)
C16	0.0546 (19)	0.0388 (17)	0.0385 (17)	-0.0269 (16)	0.0012 (14)	-0.0068 (13)
C17	0.056 (2)	0.0293 (15)	0.0463 (19)	-0.0153 (15)	-0.0018 (15)	-0.0135 (14)
C18	0.0459 (17)	0.0331 (15)	0.0347 (15)	-0.0128 (13)	0.0038 (12)	-0.0177 (12)
C19	0.0315 (13)	0.0345 (14)	0.0227 (12)	-0.0160 (12)	0.0020 (10)	-0.0121 (11)
C20	0.0319 (13)	0.0354 (14)	0.0252 (13)	-0.0167 (12)	0.0067 (10)	-0.0156 (11)
C21	0.0315 (14)	0.0349 (15)	0.0342 (15)	-0.0074 (12)	0.0024 (11)	-0.0162 (12)
C22	0.0326 (15)	0.0379 (16)	0.0456 (18)	-0.0082 (13)	0.0066 (12)	-0.0185 (14)
C23	0.0405 (16)	0.0360 (15)	0.0405 (16)	-0.0148 (13)	0.0165 (12)	-0.0224 (13)
C24	0.0356 (14)	0.0277 (13)	0.0301 (14)	-0.0161 (12)	0.0112 (11)	-0.0142 (11)
C25	0.0509 (18)	0.0376 (16)	0.0277 (14)	-0.0181 (14)	0.0120 (12)	-0.0186 (12)
C26	0.0523 (18)	0.0357 (15)	0.0265 (14)	-0.0156 (14)	0.0022 (12)	-0.0140 (12)
C27	0.0388 (15)	0.0278 (13)	0.0290 (14)	-0.0135 (12)	0.0012 (11)	-0.0110 (11)
C28	0.0409 (17)	0.0435 (18)	0.0381 (17)	-0.0108 (15)	-0.0076 (13)	-0.0154 (14)
C29	0.0316 (15)	0.051 (2)	0.052 (2)	-0.0060 (15)	-0.0022 (13)	-0.0211 (16)
C30	0.0315 (14)	0.0434 (17)	0.0430 (17)	-0.0100 (13)	0.0089 (12)	-0.0210 (14)
C31	0.0324 (13)	0.0236 (12)	0.0261 (13)	-0.0130 (11)	0.0059 (10)	-0.0105 (10)
C32	0.0321 (13)	0.0235 (12)	0.0245 (12)	-0.0130 (11)	0.0074 (10)	-0.0101 (10)

Geometric parameters (Å, °)

Cu1—O2	1.993 (2)	С9—Н9	0.9300

Cu1—N1	1.999 (2)	C10—C11	1.371 (5)
Cu1—N2	2.049 (2)	С10—Н10	0.9300
Cu1—N3	2.005 (2)	C11—C12	1.394 (5)
Cu1—N4	2.212 (3)	C11—H11	0.9300
S1—O3	1.438 (3)	C12—C20	1.406 (4)
S1—O4	1.446 (2)	C12—C13	1.438 (4)
S1—O5	1.450 (3)	C13—C14	1.338 (5)
S1—C6	1.769 (3)	С13—Н13	0.9300
O1—C1	1.223 (4)	C14—C15	1.434 (4)
O2—C1	1.270 (4)	C14—H14	0.9300
O6—H6B	0.86	C15—C16	1.401 (5)
O6—H6A	0.76	C15—C19	1.409 (4)
O7—H7B	0.72	C16—C17	1.369 (5)
O7—H7A	0.76	С16—Н16	0.9300
N1—C9	1.326 (4)	C17—C18	1.396 (4)
N1—C20	1.359 (3)	С17—Н17	0.9300
N2—C18	1.326 (4)	C18—H18	0.9300
N2—C19	1.362 (3)	C19—C20	1.421 (4)
N3—C21	1.322 (4)	C21—C22	1.389 (4)
N3—C32	1.369 (3)	C21—H21	0.9300
N4—C30	1.319 (4)	C22—C23	1.372 (4)
N4—C31	1.356 (3)	C22—H22	0.9300
N5—C3	1.380 (4)	C23—C24	1.401 (4)
N5—C2	1.432 (4)	С23—Н23	0.9300
N5—H5A	0.8600	C24—C32	1.407 (4)
C1—C2	1.543 (4)	C24—C25	1.431 (4)
C2—H2A	0.9700	C25—C26	1.343 (4)
C2—H2B	0.9700	C25—H25	0.9300
C3—C4	1 397 (4)	C26—C27	1 435 (4)
C3—C8	1 405 (4)	С26—Н26	0.9300
C_{4}	1 377 (4)	C27—C28	1 399 (4)
C4—H4	0.9300	$C_{27} = C_{20}$	1.599(4) 1 402(4)
C5-C6	1 390 (4)	C_{28} C_{29}	1 365 (5)
C5—H6	0.9300	C28—H28	0.9300
C6-C7	1 388 (4)	$C_{20} = C_{30}$	1 397 (5)
C7_C8	1.308(4) 1.378(4)	$C_{20} = H_{20}$	0.9300
$C_7 = C_8$	0.0200	$C_{29} = H_{29}$	0.9300
C° H5	0.9300	C_{30} C_{130} C_{21} C_{22}	0.9300
C8—H5	0.9300	C31—C32	1.432 (4)
09-010	1.595 (4)		
O2—Cu1—N1	91.43 (9)	C10-C11-C12	119.6 (3)
O2—Cu1—N3	93.36 (9)	C10-C11-H11	120.2
N1—Cu1—N3	172.29 (9)	C12—C11—H11	120.2
O2—Cu1—N2	159.24 (9)	C11—C12—C20	117.3 (3)
N1—Cu1—N2	81.66 (9)	C11—C12—C13	124.6 (3)
N3—Cu1—N2	95.79 (9)	C20—C12—C13	118.0 (3)
O2—Cu1—N4	94.19 (9)	C14—C13—C12	121.3 (3)
N1—Cu1—N4	93.85 (9)	C14—C13—H13	119.3
N3—Cu1—N4	79.78 (9)	С12—С13—Н13	119.3
N2—Cu1—N4	105.74 (9)	C13—C14—C15	121.8 (3)

O3—S1—O4	113.06 (15)	C13—C14—H14	119.1
O3—S1—O5	113.39 (18)	C15—C14—H14	119.1
O4—S1—O5	110.79 (17)	C16—C15—C19	117.2 (3)
O3—S1—C6	107.61 (15)	C16—C15—C14	124.6 (3)
O4—S1—C6	106.23 (13)	C19—C15—C14	118.2 (3)
O5—S1—C6	105.13 (15)	C17—C16—C15	119.5 (3)
C1—O2—Cu1	119.80 (19)	С17—С16—Н16	120.3
H6B—O6—H6A	102.9	C15—C16—H16	120.3
H7B—O7—H7A	100.4	C16—C17—C18	119.6 (3)
C9—N1—C20	118.4 (2)	С16—С17—Н17	120.2
C9—N1—Cu1	128.42 (19)	С18—С17—Н17	120.2
C20—N1—Cu1	112.63 (18)	N2-C18-C17	122.9 (3)
C18—N2—C19	117.8 (2)	N2—C18—H18	118.5
C18—N2—Cu1	131.1 (2)	C17—C18—H18	118.5
C19—N2—Cu1	110.75 (18)	N2—C19—C15	123.0 (3)
C21—N3—C32	118.6 (2)	N2-C19-C20	117.0 (2)
C21—N3—Cu1	126.62 (19)	C15—C19—C20	120.0 (3)
C32—N3—Cu1	114.69 (18)	N1-C20-C12	122.8 (3)
C30—N4—C31	117.8 (2)	N1-C20-C19	116.6 (2)
C30—N4—Cu1	132.9 (2)	C12—C20—C19	120.6 (2)
C31—N4—Cu1	108.84 (17)	N3—C21—C22	123.1 (3)
C3—N5—C2	121.9 (2)	N3—C21—H21	118.4
C3—N5—H5A	119.1	C22—C21—H21	118.4
C2—N5—H5A	119.1	C23—C22—C21	119.2 (3)
O1—C1—O2	125.7 (3)	C23—C22—H22	120.4
O1—C1—C2	117.8 (3)	C21—C22—H22	120.4
O2—C1—C2	116.4 (3)	C22—C23—C24	119.5 (3)
N5—C2—C1	115.8 (2)	C22—C23—H23	120.3
N5—C2—H2A	108.3	С24—С23—Н23	120.3
C1—C2—H2A	108.3	C23—C24—C32	118.0 (3)
N5—C2—H2B	108.3	C23—C24—C25	123.1 (3)
C1—C2—H2B	108.3	C32—C24—C25	118.9 (3)
H2A—C2—H2B	107.4	C26—C25—C24	121.3 (3)
N5—C3—C4	119.5 (3)	C26—C25—H25	119.3
N5—C3—C8	122.5 (3)	C24—C25—H25	119.3
C4—C3—C8	118.0 (3)	C25—C26—C27	120.8 (3)
C5—C4—C3	120.9 (3)	C25—C26—H26	119.6
С5—С4—Н4	119.6	C27—C26—H26	119.6
C3—C4—H4	119.6	C28—C27—C31	117.3 (3)
C4—C5—C6	120.9 (3)	C28—C27—C26	123.2 (3)
С4—С5—Н6	119.6	C31—C27—C26	119.5 (3)
С6—С5—Н6	119.6	C29—C28—C27	119.2 (3)
C7—C6—C5	118.7 (3)	C29—C28—H28	120.4
C7—C6—S1	122.0 (2)	С27—С28—Н28	120.4
C5—C6—S1	119.3 (2)	C28—C29—C30	119.7 (3)
C8—C7—C6	120.9 (3)	С28—С29—Н29	120.2
C8—C7—H7	119.6	С30—С29—Н29	120.2
C6—C7—H7	119.6	N4—C30—C29	122.8 (3)
C7—C8—C3	120.7 (3)	N4—C30—H30	118.6

С7—С8—Н5	119.7	С29—С30—Н30	118.6
С3—С8—Н5	119.7	N4—C31—C27	123.2 (3)
N1—C9—C10	122.2 (3)	N4—C31—C32	117.4 (2)
N1—C9—H9	118.9	C27—C31—C32	119.4 (2)
С10—С9—Н9	118.9	N3—C32—C24	121.6 (2)
C11—C10—C9	119.7 (3)	N3—C32—C31	118.4 (2)
С11—С10—Н10	120.1	C24—C32—C31	120.0 (2)
С9—С10—Н10	120.1		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!- \!$
N5—H5A···O2 ⁱ	0.86	2.35	3.173 (4)	160
O6—H6A…O4	0.76	2.11	2.850 (5)	166
O6—H6B…O1 ⁱⁱ	0.86	2.15	2.963 (5)	156
O7—H7B···O3 ⁱⁱⁱ	0.72	2.24	2.915 (4)	156
O7—H7A···O5 ^{iv}	0.76	2.11	2.785 (4)	148

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*+1, *y*-1, *z*; (iii) -*x*+1, -*y*+1, -*z*; (iv) *x*-1, *y*, *z*.

Fig. 2

